Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Terbium(III) hydrogendiphosphate(V) tetrahydrate

Karla Fejfarová,^a Rachid Essehli,^b Brahim El Bali^b and Michal Dušek^a*

^aInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic, and ^bDepartment of Chemistry, Faculty of Sciences, University Mohammed 1st, PO Box 524, 60 000 Oujda, Morocco Correspondence e-mail: fejfarov@fzu.cz

Received 19 December 2007; accepted 18 January 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (P–O) = 0.002 Å; *R* factor = 0.012; *wR* factor = 0.034; data-to-parameter ratio = 11.9.

The Tb atom of the title compound, TbHP₂O₇·4H₂O, is coordinated by the O atoms of three symmetrically independent water molecules and by five O atoms belonging to HP₂O₇⁻ groups. The TbO₈ polyhedra are interconnected by the diphospate anions, forming a three-dimensional network which is additionally stabilized by O-H···O hydrogen bonding between water molecules and O atoms of the HP₂O₇⁻ anions. Uncoordinated water molecules are situated in channels and are connected *via* hydrogen bonds with the framework.

Related literature

Isostructural compounds of the type REHP_2O_7 ·4H₂O were reported for RE = Sm by Chehimi-Moumen *et al.* (2002), for RE = Gd by Hraiech *et al.* (2005) and for RE = Eu by Anna-Rabah *et al.* (2006).

Experimental

Crystal data TbHP₂O₇·4H₂O $M_r = 405.9$ Monoclinic, P_{2_1}/n a = 6.6006 (6) Å b = 11.4744 (9) Å c = 11.7252 (13) Å $\beta = 92.150$ (8)°

Data collection

Oxford Diffraction Xcalibur 2 diffractometer with Sapphire 2 CCD area-detector Absorption correction: analytical [*CrysAlis RED* (Oxford Diffraction, 2005), using a multifaceted crystal model based on $V = 887.42 (15) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 8.38 mm^{-1} T = 295 K 0.14 \times 0.06 \times 0.03 mm

expressions derived by Clark & Reid (1995)] $T_{min} = 0.329$, $T_{max} = 0.635$ 8671 measured reflections 1850 independent reflections 1628 reflections with $I > 3\sigma(I)$ $R_{int} = 0.019$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.011$	H atoms treated by a mixture of
$wR(F^2) = 0.034$	independent and constrained
S = 1.21	refinement
1850 reflections	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
10 restraints	

Table 1

Selected bond lengths (Å).

Tb1-O1	2.3145 (17)	P1-O1	1.5129 (18)
Tb1-O2 ⁱ	2.2877 (17)	P1-O2	1.5063 (18)
Tb1-O3 ⁱⁱ	2.3514 (18)	P1-O3	1.5169 (19)
Tb1-O5	2.3718 (18)	P1-O7	1.6201 (18)
Tb1-O6 ⁱⁱⁱ	2.3842 (17)	P2-O4	1.562 (2)
Tb1-O8	2.605 (2)	P2-O5	1.4957 (19)
Tb1-O9	2.433 (2)	P2-O6	1.4891 (18)
Tb1-O10	2.421 (2)	P2-O7	1.6116 (18)
-			

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 2; (iii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O4−H41···O11	0.813 (13)	1.736 (14)	2.546 (3)	174 (3)
O8−H81···O1 ⁱⁱ	0.82 (2)	1.98 (3)	2.762 (3)	159 (3)
$O8-H82\cdots O3^{i}$	0.822 (18)	2.231 (14)	2.972 (3)	150 (3)
O9−H91···O4 ^{iv}	0.83 (3)	2.06 (3)	2.851 (3)	161 (3)
O9−H92···O8 ⁱⁱⁱ	0.828 (18)	1.95 (2)	2.750 (3)	164 (3)
$O10-H101\cdots O5^{iii}$	0.82 (2)	2.16 (3)	2.880 (3)	147 (3)
$O10-H102\cdots O7^{v}$	0.812 (16)	2.28 (2)	2.991 (3)	147 (3)
$O11 - H111 \cdots O3^{v}$	0.80 (2)	2.18 (2)	2.941 (3)	157 (3)
				1 2

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 2; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 1, -y + 1, -z + 1; (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2005); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *JANA2000* (Petříček *et al.*, 2007); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2000*.

This work was supported by the Grant Agency of the Czech Republic (grant No. 202/05/0421).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2172).

References

Anna-Rabah, Z., Chehimi-Moumen, F., Ben Hassen-Chehimi, D. & Trabelsi-Ayadi, M. (2006). Solid State Sci. 8, 932–939.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Version 3. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Chehimi-Moumen, F., Ferid, M., Ben-Hassen-Chehimi, D. & Trabelsi-Ayadi, M. (2002). *Solid State Sci.* **4**, 979–983.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.

Hraiech, S., Chehimi-Moumen, F., Ferid, M., Ben Hassen-Chehimi, D. & Trabelsi-Ayadi, D. (2005). *Mater. Res. Bull.* **40**, 2170–2179.

Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2000. Institute of Physics, Prague, Czech Republic. supplementary materials

Acta Cryst. (2008). E64, i15 [doi:10.1107/S1600536808001992]

Terbium(III) hydrogendiphosphate(V) tetrahydrate

K. Fejfarová, R. Essehli, B. El Bali and M. Dusek

Comment

Acidic rare earth diphosphates of general formula REHP₂O₇ nH₂O exhibit interesting luminescent and optical properties (Hraiech *et al.*, 2005 and references herein). The title compound is isostructural with other compounds of formula type REHP₂O₇ H₂O, RE = Sm (Chehimi-Moumen *et al.*, 2002), Gd (Hraiech *et al.*, 2005), and Eu (Anna-Rabah *et al.*, 2006).

The structure of TbHP₂O₇·4H₂O is made up of TbO₈ polyhedra and HP₂O₇ groups that form a three-dimensional framework. In channels running along *a* (Fig. 2) free water molecules are located which are connected *via* hydrogen bonds with the framework (see hydrogen-bonding Table).

The P_2O_7 group is protonated, with the H atom located at O4 (Fig. 1), as also indicated by elongation of the corresponding P—O distance. The bridging angle P1—O7—P2 between the two PO₄ tetrahedra is 130.73 (11)°.

Experimental

An aqueous solution of TbCl₃·6H₂O (0.1*M*) was added dropwise to anhydrous $Na_4P_2O_7$ dissolved in destilled water (0.1*M*). The pH of the mixture was controlled with diluted hydrochloric acid to be slightly acidic, and the solution was stirred for two h at room temperature. Prismatic-shaped colourless crystals with a maximal size of 0.3 mm formed after a few days on slow evaporation.

Refinement

The H atoms were localized from a difference Fourier map. Their coordinates were refined independently with O—H distances restrained to 0.82 (1) Å. The isotropic temperature parameters of the H atoms were refined with $1.2U_{eq}$ of the parent atom. The H111—O11—H112 angle of the free water molecule was restrained to 109.47 (10)°.

Figures

Fig. 1. Part of the structure of HTbP₂O₇·4H₂O drawn with displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 1.5 - x, -1/2 + y, 1.5 - z; (iii) 1 - x, 1 - y, 2 - z]

Fig. 2. The packing of TbHP₂O₇'4H₂O viewed along **a**. Hydrogen bonds are represented by dashed lines. Colour code: Pink (P₂O₇ polyhedra), red spheres (O), grey spheres (Tb), dark grey spheres (H). All atoms are displayed with arbitrary radii. For clarity, O atoms belonging to PO₄ tetrahedra have a smaller size than O atoms of water molecules. O atoms that would obscure H atoms important for understanding the hydrogen bonding scheme are plotted semitransparently.

Terbium(III) hydrogendiphosphate(V) tetrahydrate

Crystal data	
TbHP ₂ O ₇ ·4H ₂ O	$F_{000} = 768$
$M_r = 405.9$	$D_{\rm x} = 3.037 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71069$ Å
Hall symbol: -P 2yn	Cell parameters from 972 reflections
a = 6.6006 (6) Å	$\theta = 2.5 - 26.5^{\circ}$
b = 11.4744 (9) Å	$\mu = 8.38 \text{ mm}^{-1}$
<i>c</i> = 11.7252 (13) Å	<i>T</i> = 295 K
$\beta = 92.150 \ (8)^{\circ}$	Prism, colorless
$V = 887.42 (15) \text{ Å}^3$	$0.14\times0.06\times0.03~mm$
Z = 4	

Data collection

Oxford Diffraction CCD diffractometer	1850 independent reflections
Radiation source: X-ray tube	1628 reflections with $I > 3\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
Detector resolution: 8.3438 pixels mm ⁻¹	$\theta_{\text{max}} = 26.6^{\circ}$
T = 295 K	$\theta_{\min} = 2.5^{\circ}$
ω scans	$h = -8 \rightarrow 7$
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2005), using a multifaceted crystal model based on expressions de- rived by Clark & Reid (1995)]	$k = -14 \rightarrow 14$
$T_{\min} = 0.329, T_{\max} = 0.635$	$l = -14 \rightarrow 14$
8671 measured reflections	

Refinement

Refinement on F^2

H atoms treated by a mixture of

	independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.011$	Weighting scheme based on measured s.u.'s $w = 1/[\sigma^2(I) + 0.0004I^2]$
$wR(F^2) = 0.034$	$(\Delta/\sigma)_{\rm max} = 0.009$
<i>S</i> = 1.21	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
1850 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
155 parameters	Extinction correction: B-C type 1 Lorentzian isotrop- ic [Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147]
10 restraints	Extinction coefficient: 2.9 (8)
9 constraints	

Special details

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on F. The goodness of fit as well as the weighted *R*-factor are based on F and F^2 for refinement carried out on F and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc*. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S may be larger than the ones from the *SHELX* program.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Tb1	0.755557 (17)	0.417027 (10)	0.836213 (10)	0.00831 (5)
P1	0.25551 (9)	0.54805 (6)	0.85787 (5)	0.00834 (18)
P2	0.47954 (9)	0.63300 (5)	0.66266 (5)	0.00860 (18)
O1	0.4213 (3)	0.45787 (15)	0.87403 (15)	0.0122 (5)
O2	0.0629 (3)	0.50007 (16)	0.80317 (16)	0.0157 (5)
O3	0.2158 (3)	0.61576 (15)	0.96588 (15)	0.0149 (5)
O4	0.3423 (3)	0.57670 (15)	0.56618 (17)	0.0169 (6)
O5	0.6553 (3)	0.55618 (15)	0.69557 (16)	0.0137 (5)
O6	0.5259 (2)	0.75465 (15)	0.62791 (15)	0.0135 (5)
07	0.3378 (3)	0.64547 (14)	0.77094 (14)	0.0112 (5)
08	0.7671 (3)	0.62083 (18)	0.93419 (17)	0.0177 (6)
09	0.8201 (4)	0.34050 (17)	0.64753 (17)	0.0252 (7)
O10	0.5535 (3)	0.24098 (19)	0.8262 (2)	0.0333 (7)
011	0.2577 (4)	0.36300 (19)	0.5980 (2)	0.0394 (9)
H81	0.697 (4)	0.614 (3)	0.9904 (18)	0.0212*
H111	0.294 (4)	0.3021 (18)	0.572 (3)	0.0472*
H82	0.881 (2)	0.643 (3)	0.955 (2)	0.0212*
H112	0.141 (2)	0.375 (3)	0.577 (3)	0.0472*
H101	0.593 (5)	0.1757 (15)	0.810 (3)	0.04*
H91	0.776 (5)	0.380 (3)	0.593 (2)	0.0303*
Н92	0.777 (4)	0.2742 (13)	0.633 (3)	0.0303*
H41	0.323 (4)	0.5072 (10)	0.574 (3)	0.0203*
H102	0.434 (2)	0.243 (3)	0.807 (3)	0.04*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}		U^{12}	U^{13}		U^{23}
Tb1	0.00694 (8)	0.00827 (8)	0.00975	(8)	0.00064 (4)	0.00087 (5)		0.00041 (4)
P1	0.0067 (3)	0.0093 (3)	0.0092 (3	3)	0.0008 (2)	0.0021 (2)		0.0011 (2)
P2	0.0082 (3)	0.0085 (3)	0.0092 (3	3)	-0.0007 (2)	0.0009 (2)		0.0011 (2)
01	0.0097 (9)	0.0127 (8)	0.0146 (9))	0.0029 (7)	0.0037 (7)		0.0037 (7)
02	0.0095 (9)	0.0182 (9)	0.0192 (1	10)	-0.0040 (7)	-0.0004 (8))	0.0001 (7)
O3	0.0201 (10)	0.0137 (8)	0.0110 (1	0)	0.0048 (8)	0.0034 (7)		-0.0010(7)
O4	0.0225 (11)	0.0120 (9)	0.0157 (1	0)	-0.0038 (8)	-0.0041 (8)		-0.0012 (7)
05	0.0113 (9)	0.0156 (9)	0.0143 (1	10)	0.0031 (7)	0.0031 (8)		0.0039 (7)
O6	0.0141 (9)	0.0107 (8)	0.0159 (9))	-0.0034 (7)	0.0016 (7)		0.0022 (7)
07	0.0115 (9)	0.0091 (8)	0.0133 (9	<i>)</i>)	0.0003 (7)	0.0055 (7)		0.0018 (7)
O8	0.0163 (11)	0.0208 (10)	0.0160 (1	1)	-0.0033 (9)	0.0013 (8)		0.0035 (8)
09	0.0432 (13)	0.0160 (10)	0.0159 (1	1)	0.0057 (10)	-0.0061 (9)		-0.0017 (8)
O10	0.0138 (10)	0.0163 (10)	0.0697 (1	17)	-0.0019 (9)	-0.0005 (11)	-0.0122 (11)
011	0.0541 (17)	0.0120 (11)	0.0542 (1	16)	-0.0102 (10)	0.0317 (14)		-0.0094 (10)
Geometric param	neters (Å, °)							
Tb1—O1		2.3145 (17)		P1—O1			1.5129	(18)
Tb1—O2 ⁱ		2.2877 (17)		P1—O2			1.5063	(18)
Tb1—O3 ⁱⁱ		2.3514 (18)		P1—O3		1.5169 (19)		
Tb1—O5		2.3718 (18)		P1—07			1.6201	(18)
Tb1—O6 ⁱⁱⁱ		2.3842 (17)		P2—O4			1.562 (2	2)
Tb1—O8		2.605 (2)		P2—O5			1.4957	(19)
Tb1—O9		2.433 (2)		P2—O6			1.4891	(18)
Tb1—O10		2.421 (2)		Р2—О7			1.6116	(18)
O1—Tb1—O2 ⁱ		143.70 (6)		O6 ⁱⁱⁱ —T	b1—O8		128.03	(6)
O1—Tb1—O3 ⁱⁱ		83.41 (6)		O6 ⁱⁱⁱ —T	b1—O9		75.70 (7)
O1—Tb1—O5		75.74 (6)		O6 ⁱⁱⁱ —T	b1—O10		71.65 (6)
O1—Tb1—O6 ⁱⁱⁱ		134.37 (6)		O8—Tb1			136.20	(6)
O1—Tb1—O8		75.29 (6)		O8—Tb1	L—O10		141.01	(7)
O1—Tb1—O9		116.61 (7)		O9—Tb1	I—O10		76.69 (8)
O1—Tb1—O10		69.56 (7)		O1—P1-	02		113.46	(10)
O2 ⁱ —Tb1—O3 ⁱⁱ		101.23 (6)		O1—P1-	—ОЗ		113.12	(10)
O2 ⁱ —Tb1—O5		80.10 (6)		O1—P1-	07		107.03	(10)
O2 ⁱ —Tb1—O6 ⁱⁱⁱ		79.67 (6)		O2—P1-	03		111.92	(11)
O2 ⁱ —Tb1—O8		71.90 (6)		O2—P1-	07		106.35	(10)
O2 ⁱ —Tb1—O9		79.03 (7)		O3—P1-	07		104.14	(10)
O2 ⁱ —Tb1—O10		146.08 (7)		O4—P2-	O5		111.48	(10)
O3 ⁱⁱ —Tb1—O5		143.50 (6)		O4—P2-	O6		107.99	(10)
O3 ⁱⁱ —Tb1—O6 ⁱⁱⁱ		71.04 (6)		O4—P2-	07		105.60	(10)
O3 ⁱⁱ —Tb1—O8		73.05 (6)		O5—P2-	O6		117.25	(10)

supplementary materials

O3 ⁱⁱ —Tb1—O9	146.04 (7)	O5—P2—O7	108.46 (10)
O3 ⁱⁱ —Tb1—O10	86.44 (8)	O6—P2—O7	105.28 (10)
O5—Tb1—O6 ⁱⁱⁱ	143.13 (6)	H81—O8—H82	109 (3)
O5—Tb1—O8	72.85 (6)	Н91—О9—Н92	104 (3)
O5—Tb1—O9	70.39 (6)	H101—O10—H102	106 (3)
O5—Tb1—O10	112.90 (7)	H111—O11—H112	109 (3)
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+1$, - <i>y</i> +1, - <i>z</i> +2; (iii) - <i>x</i> +3/2, <i>y</i>	-1/2, -z+3/2.	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O4—H41…O11	0.813 (13)	1.736 (14)	2.546 (3)	174 (3)
O8—H81…O1 ⁱⁱ	0.82 (2)	1.98 (3)	2.762 (3)	159 (3)
O8—H82···O3 ⁱ	0.822 (18)	2.231 (14)	2.972 (3)	150 (3)
O9—H91…O4 ^{iv}	0.83 (3)	2.06 (3)	2.851 (3)	161 (3)
O9—H92…O8 ⁱⁱⁱ	0.828 (18)	1.95 (2)	2.750 (3)	164 (3)
O10—H101…O5 ⁱⁱⁱ	0.82 (2)	2.16 (3)	2.880 (3)	147 (3)
$O10$ — $H102$ ··· $O7^{v}$	0.812 (16)	2.28 (2)	2.991 (3)	147 (3)
O11—H111···O3 ^v	0.80 (2)	2.18 (2)	2.941 (3)	157 (3)
Symmetry codes: (ii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +2; (i) <i>x</i> +1, <i>y</i> , <i>z</i> ;	(iv) -x+1, -y+1, -z+	-1; (iii) -x+3/2, y-1/	2, $-z+3/2$; (v) $-x+1/2$	2, y-1/2, -z+3/2.

Fig. 1

Fig. 2

